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This paper presents the conservation laws for optical cubic–quartic solitons in birefringent fibers where the governing model 
is Sasa–Satsuma equation. The multiplier approach reveals the conserved densities to the model. The conserved quantities 
are finally computed from these soliton solutions that were reported earlier.  
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1. Introduction 

 
One of the key features in soliton transmission is its 

conservation laws. It says a whole lot about the physical 

features that stays invariant during its transmission 

across intercontinental distances unless perturbative 

effects creep in. These conservation laws are derivable 

in a number if ways. The usage of Lie symmetry or 

through the computation of the Lagrangian for the 

system or even the multiplier approach are some of the 

commonly studied methods to recover these laws.  

The current paper secures the conservation laws for 

cubic–quartic (CQ) solitons in birefringent fibers that are 

modeled by Sasa–Satsuma equation (SSE) [1–5]. The 

concept of CQ solitons was introduced about half a 

decade ago when low count chromatic dispersion is 

replaced with third–order dispersion (3OD) and fourth–

order dispersion (4OD). The three conservation laws that 

emerge from the model are computed and exhibited in 

the paper. SSE was studied by many authors and several 

solutions were recovered including quiescent solitons for 

nonlinear chromatic dispersion.  

 

 

1.1. Governing model 

 
The CQ-SSE in birefringent fibers with Kerr law 

nonlinearity is written, for the first time, as: 
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where   ,   ,   ,   ,   ,   ,    and    (     ) are real 

valued constants, while  (   ) and  (   ) are complex-

valued functions representing the wave profile. In Eqs. (1) 

and (2), the first term is the linear temporal evolution term, 

   and    (     ) are the coefficients of 3OD and 4OD, 

respectively. Next,    (     ) are the coefficients of Kerr 

law nonlinearity,    (     ) are the coefficients of cross-

phase modulation,    and    are the self-steepening and the 

stimulated Raman scattering, while    and    are the 

nonlinear terms parameters. 

 

 
2. Conserved quantities 

 
The soliton pulses in birefringent fibers are given in the 

form: 
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In the system above, we let        and 

       so that the system splits into a system of four 

pdes whose conserved flows (     ) are constructed 

using the multiplier approach. It turns out that if       

and      , we have a single multiplier   
(         ) giving rise to the ‘power’ conserved 

density 
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so that a corresponding conserved density of the 

complex system is 
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Also, if               and       we 

have linear momentum conservation 
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and the momentum density is 
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The conserved density corresponding to energy is 

obtained only if, in addition to the above restrictions on 

the parameters,        , viz., 
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Therefore, the conserved quantities are: 
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3. Conclusions 

 
This paper recovers conservation laws for CQ solitons 

in birefringent fibers that are modeled by SSE. The 

multiplier method recovers the conserved densities while the 

soliton solutions, reported earlier, give the conserved 

quantities from these densities [5]. The results serve as a 

way to move along with additional avenues to pursue. The 

conservation laws lead to the dynamics of quasi–stationary 

solitons that would give way to its adiabatic dynamics due to 

quasi–monochromaticity. Additional features would be to 

compute collision–induced timing jitter for the soliton pair 

in birefringent fibers. These upcoming results will be aligned 

with the recently reported works [6-15]. Such results are 

forthcoming. 
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